Surjectivité de l'exponentielle de matrice

Lemme 1. Pour $A \in M_n(\mathbb{C})$, $\exp(\mathbb{C}[A]) = \mathbb{C}[A]^{\times}$.

 $D\'{e}monstration.$

Soit $A \in GL_n(\mathbb{C})$.

Étape 1 : Montrons que $\mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap GL_n(\mathbb{C})$.

- (⊆) On a $\mathbb{C}[A]^{\times}$ ⊆ $\mathbb{C}[A]$, et pour tout $M \in \mathbb{C}[A]^{\times}$, il existe $N \in \mathbb{C}[A]$ telle que $MN = I_n$, donc $M \in GL_n(\mathbb{C})$. Finalement, $\mathbb{C}[A]^{\times} \subseteq \mathbb{C}[A] \cap GL_n(\mathbb{C})$.
- (⊇) Soit $M \in \mathbb{C}[A] \cap GL_n(\mathbb{C})$. On considère son polynôme caractéristique $\chi_M = \sum_{i=0}^n a_i X^i$. Comme $M \in GL_n(\mathbb{C})$, on a $a_0 = \det M \neq 0$, et, par le théorème de Cayley-Hamilton, on a $\chi_M(M) = 0$.

$$\chi_M(M) = \sum_{i=0}^n a_i M^i = 0 \Leftrightarrow M\left(\sum_{i=1}^n a_i M^{i-1}\right) = -a_0 I_n \Leftrightarrow M\left(-\frac{1}{a_0} \sum_{i=1}^n a_i M^{i-1}\right) = I_n$$

Ainsi, comme $M \in \mathbb{C}[A]$, on a $-\frac{1}{a_0} \sum_{i=1}^n a_i M^{i-1} \in \mathbb{C}[A]$, donc $M \in \mathbb{C}[A]^{\times}$.

Étape 2 : Montrons que $\exp(\mathbb{C}[A]) \subseteq \mathbb{C}[A]^{\times}$.

Soit $M \in \exp(\mathbb{C}[A])$, on a donc $M \in GL_n(\mathbb{C})$, et il existe $N \in C[A]$ tel que $M = \exp(N)$.

Il reste donc à prouver que $\exp(N)$ est un polynôme en A.

L'ensemble $\mathbb{C}[A]$ est un sous-espace vectoriel de $M_n(\mathbb{C})$ qui est de dimension finie, donc $\mathbb{C}[A]$ est fermé.

De plus, pour tout entier n, $\sum_{i=0}^{n} \frac{N^i}{i!} \in \mathbb{C}[A]$.

On en conclut par passage à la limite que $\exp(N) \in \mathbb{C}[A]$.

Étape 3 : Montrons que $\mathbb{C}[A]^{\times}$ est connexe.

Soient M_1 et M_2 dans $\mathbb{C}[A]^{\times}$. Pour $z \in \mathbb{C}$, on pose $M(z) = zM_1 + (1-z)M_2 \in \mathbb{C}[A]$, et $P(z) = \det(M(z)) \in \mathbb{C}$. On cherche un chemin $\gamma : [0,1] \to \mathbb{C}$ continu, avec $\gamma(0) = 0$ et $\gamma(1) = 1$, et tel que $P \circ \gamma$ reste dans \mathbb{C}^{\times} .

Or le polynôme P n'est pas nul $(P(0) \neq 0)$, donc P ne s'annule qu'un nombre fini de fois. Notons Z l'ensemble de ses racines. Comme $\mathbb{C} \setminus Z$ est connexe par arcs, puisqu'on a enlevé un nombre fini de points, il existe un chemin γ qui évite les points de Z. Ainsi, il existe un chemin continu qui relie M_1 et M_2 dans $GL_n(\mathbb{C})$. Donc $\mathbb{C}[A]^{\times}$ est connexe par arcs, donc connexe.

Étape 4 : Montrons que $\exp(\mathbb{C}[A])$ est ouvert dans $\mathbb{C}[A]^{\times}$.

On applique le théorème d'inversion locale à exp : $\mathbb{C}[A] \to \mathbb{C}[A]^{\times}$: comme $d_0 \exp = Id$ est inversible, il existe un voisinage ouvert \mathcal{U} de 0 dans $\mathbb{C}[A]$ et un voisinage ouvert \mathcal{V} de I_n dans $\mathbb{C}[A]^{\times}$, tels que exp soit un \mathscr{C}^1 -difféomorphisme entre \mathcal{U} et \mathcal{V} . En particulier, $\exp(\mathbb{C}[A])$ contient un voisinage de I_n .

Soit maintenant $M \in \mathbb{C}[A]$. On pose $\mathcal{V}_M = \{V \exp(M) \mid V \in \mathcal{V}\}$.

On a $\exp(M) \in \mathcal{V}_M$, et \mathcal{V}_M est ouvert car \mathcal{V} l'est et $\exp(M)$ est inversible.

De plus, pour tout $V \in \mathcal{V}$, il existe $U \in \mathcal{U}$ tel que $V = \exp(U)$, d'où :

$$V \exp(M) = \exp(U) \exp(M) = \exp(U + M) \in \exp(\mathbb{C}[A])$$

Ainsi, \mathcal{V}_M est un voisinage ouvert de $\exp(M)$, donc $\exp(\mathbb{C}[A])$ est un ouvert de $\mathbb{C}[A]^{\times}$.

Étape 5 : Montrons que $\exp(\mathbb{C}[A])$ est fermé dans $\mathbb{C}[A]^{\times}$.

On va montrer que $E = \mathbb{C}[A]^{\times} \setminus \exp(\mathbb{C}[A])$ est un ouvert de $\mathbb{C}[A]^{\times}$.

Pour cela, montrons que :

$$E = \bigcup_{M \in E} M \exp(\mathbb{C}[A])$$

- $(\subseteq) \ \operatorname{Soit} \ M \in E, \ \operatorname{on} \ \operatorname{a} \ M = M \exp(0) \in \bigcup_{M \in E} M \exp(\mathbb{C}[A]).$
- (⊇) Soient $M \in E$ et $P \in \mathbb{C}[X]$. Si $N = M \exp(P(A))$, alors $M = N \exp(-P(A))$. Ainsi, si $N \in \exp(\mathbb{C}[A])$, on aura aussi $M \in \exp(\mathbb{C}[A])$, ce qui est exclu, car $M \in E$. On a donc que $N \notin \exp(\mathbb{C}[A])$, donc $N \in E$.

Or, pour tout $M \in E$, on a $M \exp(\mathbb{C}[A])$ qui est un ouvert de $\mathbb{C}[A]^{\times}$, car M est inversible est que $\exp(\mathbb{C}[A])$ est ouvert par l'étape précédente. Ainsi E est ouvert dans $\mathbb{C}[A]^{\times}$ comme réunion d'ouvert, donc $\exp(\mathbb{C}[A])$ est fermé dans $\mathbb{C}[A]^{\times}$.

Étape 6 : Conclusion.

L'ensemble $\exp(\mathbb{C}[A])$ est ouvert et fermé dans $\mathbb{C}[A]^{\times}$ qui est connexe.

Or, $I_n = \exp(0)$ est dans $\exp(\mathbb{C}[A])$, qui est donc non vide. On en conclut que $\exp(\mathbb{C}[A]) = \mathbb{C}[A]^{\times}$.

Théorème 2.
$$\exp(M_n(\mathbb{C})) = GL_n(\mathbb{C})$$

Démonstration.

Soit $A \in GL_n(\mathbb{C})$, on a donc $A \in \mathbb{C}[A]^{\times}$, donc par le lemme il existe $P \in \mathbb{C}[X]$ tel que $A = \exp(P(A))$. On a donc bien un antécédent dans $M_n(\mathbb{C})$.

Théorème 3.
$$\exp(M_n(\mathbb{R})) = \{A^2 \mid A \in GL_n(\mathbb{R})\}$$

 $D\'{e}monstration.$

- (⊆) Si $A \in \exp(M_n(\mathbb{R}))$, on a $B \in M_n(\mathbb{R})$ telle que $A = \exp(B)$. Alors $A = \exp(\frac{B}{2})^2$, avec $\exp(\frac{B}{2}) \in GL_n(\mathbb{R})$.
- (⊇) Soit $A \in GL_n(\mathbb{R})$, on a donc $A \in \mathbb{C}[A]^{\times}$, et par le lemme il existe $P \in \mathbb{C}[X]$ tel que $A = \exp(P(A))$. P est complexe, mais A est réelle, donc, en passant au conjugué, on a $A = \exp\left(\overline{P(A)}\right)$. On a alors :

$$A^2 = \exp(P(A)) \exp\left(\overline{P(A)}\right) = \exp\left(P(A) + \overline{P(A)}\right) = \exp\left(\left(P + \overline{P}\right)(A)\right)$$

Or $P + \overline{P}$ est à coefficients réels, donc $(P + \overline{P})(A)$ est dans $M_n(\mathbb{R})$. Donc $(P + \overline{P})(A)$ est un antécédent de A pour l'exponentielle.

Conclusion. exp: $M_n(\mathbb{C}) \to GL_n(\mathbb{C})$ et exp: $M_n(\mathbb{R}) \to \{A^2 \mid A \in GL_n(\mathbb{R})\}$ sont surjectives. \triangleleft

Références

[Zav] Maxime Zavidovique. Un max de math. Calvage et Mounet